登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

天道酬勤 玩物丧志

用勇气去改变可以改变的事情,用胸怀去包容无法改变的事情,用智慧去判断两者的区别

 
 
 

日志

 
 

卷积 Convolution  

2011-04-02 21:29:01|  分类: 数学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
定义:数学中关于两个函数的一种无穷积分运算。对于函数f1(t)和f2(t),式中:“*”为卷积运算符号
其卷积表示为:f(t)=f1(t)*f2(t)= ∫f1(m)f2(t-m)dm.
 卷积公式是用来求随机变量和的密度函数(pdf)的计算公式
   在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移与g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。    简单介绍    卷积是分析数学中一种重要的运算。设: f(x),g(x)是R1上的两个可积函数,作积分:    可以证明,关于几乎所有的 ,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。    卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。    由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧支集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。    卷积的概念还可以推广到数列、测度以及广义函数上去。  卷积在工程和数学上都有很多应用:    统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。     卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。     高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:     for(i=0; i<N; i++)     {     for(j=0; j<N; j++)     {     g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));     sum += g[i*N+j];     }     }     再除以 sum 得到归一化算子     N是滤波器的大小,delta自选     首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。     信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。     因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。     卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
  评论这张
 
阅读(744)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018